0=-16t^2+1972

Simple and best practice solution for 0=-16t^2+1972 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+1972 equation:



0=-16t^2+1972
We move all terms to the left:
0-(-16t^2+1972)=0
We add all the numbers together, and all the variables
-(-16t^2+1972)=0
We get rid of parentheses
16t^2-1972=0
a = 16; b = 0; c = -1972;
Δ = b2-4ac
Δ = 02-4·16·(-1972)
Δ = 126208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{126208}=\sqrt{256*493}=\sqrt{256}*\sqrt{493}=16\sqrt{493}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{493}}{2*16}=\frac{0-16\sqrt{493}}{32} =-\frac{16\sqrt{493}}{32} =-\frac{\sqrt{493}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{493}}{2*16}=\frac{0+16\sqrt{493}}{32} =\frac{16\sqrt{493}}{32} =\frac{\sqrt{493}}{2} $

See similar equations:

| 10x^2+6x=8 | | 7-14m=2-5 | | (x+2)(x–3)–3=11 | | 2x+1=5x+5=180 | | -3(n-5)+5n=-5 | | 3y—20=7 | | 32*x+38=102 | | -8(m-3)=64 | | 4/b=3-2/b | | k/6+4=15 | | 6m−8=22 | | y-47=13 | | -2|3x+7|+8=10 | | 22=8x+10-4x | | 7x+40=3x+40 | | 1/512^2x=1/64^x^2 | | 5x-2+x=9+3x+101 | | -7(-3x-7)=43x+49 | | 180=2x+10+4x+20 | | 12x+5=8x-31 | | -66*x/6=-33 | | 8(m-8)=56 | | -4(-m-3)+8=-28 | | –2y–7=3 | | 175=28-w | | (5x)(3)=75.X= | | 5x^2+38=6x | | 3n-11=75-1n | | 580+29x=490+35x | | -10+|5n|=10 | | -8w-2w-9=31 | | 3^x-7=20 |

Equations solver categories